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The linear operators appearing in the Chapman-Enskog solutions to Kirkwood's 
Fokker-Planck kinetic equation and to Rice and Allnatt's kinetic equation are studied 
in this article. Existence proofs are given for the linearized Chapman-Enskog equations 
involving either the Fokker-Planck or the Rice-Allnatt operators. It is shown that the 
Fokker-Planck and Rice-Allnatt operators, defined in the domain appropriate to 
kinetic theory, are essentially self-adjoint. It is also shown that the spectrum of either 
of these operators coincides with the spectrum of the self-adjoint extension of the 
corresponding operator. 

KEY W O R D S :  Kinetic theory; nonequilibrium statistical mechanics; Fokker-Planck 
and Rice-AIInatt equations; existence theory for Chapman-Enskog solutions to kinetic 
equations. 

1. I N T R O D U C T I O N  

Several  years  ago,  K i r k w o o d  (1) developed a kinetic  theory  of  simple fluids in which 
he in t roduced  a second-order  differential  o p e r a t o r - - s o m e t i m e s  called a F o k k e r -  
P lanck  coll ision o p e r a t o r - - t o  account  for  the dissipat ive effect o f  in te rmolecula r  
coll isions on the rate  o f  change o f  the singlet d is t r ibut ion  function.  In  arr iving at  
the F o k k e r - P l a n c k  opera tor ,  K i r k w o o d  had  to argue tha t  coll isions between molecules  
involved only small  exchanges o f  m o m e n t u m  between molecules.  Thus,  he neglected 
in some sense the s t rongly repulsive collisions tha t  molecules undergo  when their  
in te rmolecular  dis tances are  such tha t  the s t rongly repulsive forces are operat ive.  

1 Departments of Chemical Engineering and Chemistry, University of Minnesota, Minneapolis, 
Minnesota. Sloan Foundation Fellow 1968-70. Guggenheim Fellow 1969-70. 
Department of Chemical Engineering, University of Minnesota, Minneapolis, Minnesota. 
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Rice and Allnatt (~,3) introduced a model which accounted for "soft" collisions, 
involving small momentum exchanges, with a Fokker-Planck operator and for 
the "hard"  close-range collisions with Enskog's hard-sphere collision operator, 
which is an integral operator. These two models have given a good deal of insight 
into the nature of transport processes in dense fluids and liquids. The Rice-Allnatt 
theory has led to encouraging agreement between predicted and experimental transport 
coefficients of the inert-gas fluids. 

Our purpose here is not to review these theories but rather to prove the existence 
theorem which has been quoted without proof in studies of the Fokker-Planck and 
Rice-Allnatt kinetic equations. (2,a) A specious existence proof was published by Wei 
and Davis. ~4) The theorem arises in connection with the Chapman-Enskog 
scheme (3,5) for solving the kinetic equations. The scheme leads to linear equations 
of the form 

A u  = f (1) 

where A is a linear operator. It is for these equations that an existence theorem is 
required. 

The corresponding problem has been studied for dilute gases, in which case A 
is the linearized Boltzmann collision operator. Hecke (6) and later Carleman (7) proved 
the existence theorem for the Boltzmann operator in the case of molecules interacting 
with a hard-sphere potential, and Grad (s) proved the theorem for molecules interacting 
with potentials of finite range. All three investigators proved the existence theorem 
by showing that the operator A can be transformed to the form A = E + K, where E 
is the identity operator and Kis a completely continuous operator. Then, the Fredholm 
alternative theorem (9) can be applied directly. 

The operators appearing in Kirkwood's Fokker-Planck theory and the Rice- 
Allnatt theory involve second-order differential operators, so that the existence 
proof presented in this paper requires a different approach from that used by Hecke, 
Carleman, and Grad. 

For  Kirkwood's Fokker-Planck collision model, the operator in Eq. (1) may be 
written in the form (1~ ~ 

AFpU = --[1/OJ(~I) ] V{1 " [O)(~1) V{l~ ] - -  K0[U ] (2a) 

where 

Ko[u] = f d~2 o.)(~2) ~1" ~J2u(g2) -~- �89 f d~J2 o3(~2)(~12 -- 3)(~2 2 -- 3) b/(~2) (2b) 

where gi is the reduced momentum defined by 

[ m ~1/2 
= v0) (3) 

a The terms composing Ko[u] are usually suppressed in the definition of Arp by appealing to the 
"auxiliary conditions." 
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and co(~:r is the Gaussian function 

w(s~,) = [1/(2r0 3/2] exp(--se~2/2) (4) 

Pc is the momentum of a reference particle, and v 0 is the local hydrodynamic velocity. 
It will play no role in our discussion. Physically, the quantity u represents the deviation 
of the singlet distribution function from the Maxwellian distribution given by Eq. (4). 
The physical interpretation of u requires that the u(~0 belong to the Hitbert space 
~2(R  3 ; co), i.e., the space of functions for which the Lebesgue integral 

f dg co(~) I u(g)? (5) 

exists. The inner product (u, v) is defined in s 3 ; co) as 

(u, v) = f dg co(~) ,7(g) v(g) (6) 

In Eq. (6), ~ denotes the complex conjugate of u. 
For the Rice-Allnatt model, the operator in Eq. (1) may be written in the form 

ARAU = AFrU + aL(u) (7) 

where a is a positive constant whose value need not be given here, and L is Boltzmann's 
collision operator for hard spheres. Grad Is~ has shown that L(u) can be written in 
the form 

L(u) = ~ G ) u ( g 0  - -  K[ul (8) 

where 

and 

v(~) = (2~r) z/2 [exp( - -~2 /2 )+  ~a f l  ~ exp(--~.~/2)d~2] (9) 

K[u] = K2[u] - -  G [ u ]  (10) 

with 

1 1 G2)] [co(~2)] 1/2 (11) K~[u] = 2(2rr)z/2 [co(~:0]z/2 f dg2 I gx -- g2 [ [exp -- ~ (~:2 if_ u(~) 

I 1 12 1 (~t2 -- ~,2)2.] I 2 [ dg2 1 exp [--  ~1 ~1 -- ~2 -- 12 K2[u] 

x [co(G)]~/2 u(g~) (12) 

where d~2 denotes a volume element in reduced momentum space. 
The domains of both Avp and ARA are defined by the set of functions 

9A = {U(g) ] U(g) ~ C2(R3) ~ ~2(R3 ; co), Au ~ ~Z(R2 ; co)} (13) 

where C"(R3) denotes the space of functions with continuous nth derivatives. The 
domain ~A is dense in the space s176 3 ; co), which itself forms a Hilbert space Jr 
with the inner product given in Eq. (6). 

822[31x-4 
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In Section 2, we state the existence theorems whose proofs are presented in 
later sections. In Section 3, the essential self-adjointness and positive-semidefiniteness 
of AFp and ARA in NA are established. In Section 4, an existence theorem is given 
for the self-adjoint extensions of AFp and ARA, and it is shown that this theorem 
implies the third existence theorem of Section 2. In Section 5, a Weyl lemma is 
proved for AF~ and ARA in N.4, and this lemma is used to prove the first existence 
theorem of Section 2. Finally, in Section 6, we investigate the spectra of AFp and ARA 
in ~A and prove the second existence theorem of Section 2. 

2. T H E  E X I S T E N C E  T H E O R E M S  

As far as kinetic theory is concerned, the main results of this paper are three 
existence theorems. Let us state these theorems in this section and present the proofs 
of them in the sections to follow. 

T h e o r e m  1. For either A = AFp or ARA, Equation (1) has a solution u ~ 9 A  

fo r f (g )  ~ CI(Rz) c~ ~2(R 3 ; co) if and only if 

(f ,  ~b) = 0 (14) 

where ~b is any solution to the equation 

A~b = 0 (15) 

For both AFp and ARA, Eq. (15) has only five solutions. These are 1, gz, and 
~:x 2 in each case. 

The solution in the sense of Theorem 1 is a classical solution of  Eq. (1). There are, 
however, two other types of soIutions to Eq. (1) that are sometimes acceptable, 
or at least useful. First, we say that Eq. (1) admits a solution u in the strong 5#~(R~ ; co) 
sense when there exists a sequence (q~} in ~A such that 

lim l] A~ ,  - f l l  --- 0 (16) 

and 

lim II ~ .  - u 11 = 0 ( 1 7 )  

where !l u !l [~(u,  u)l/2] denotes the norm of the function U(~x) in the space ~a2(R 3 ; to). 
Second, we say that Eq. (1) has a solution u in the weak ~ 2 ( R  3 ; to) sense if the 
equation 

(A~, u) = (~ , f )  (18) 

holds for every q~ e c~~ , where 

t~(gx) c~ ~ C~(Ra), ~ ------- 0 outside a compact subset t 
~~ (19) 

of R~ depending on ~ and contained in R~ 1 

The inner product in Eq. (18) is in the space ~a~(R 3 ; co). 
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We can now state the other two existence theorems. 

T h e o r e m  2. For  either A ----- AFp or ARA, Eq. (1) has a solution u in the strong 
2r 3 ; co) sense for f(gz) s s ; co) if and only if 

( f ,  40 = o (20) 

where ~b is any solution to Eq. (15). 

T h e o r e m  3. For either A = AFe o r  A R A  , Eq. (1) has a solution u in the 
weak  ~ 2 ( R  3 ; co) sense for f (g l )  s 5r ; co) if and only if 

(f ,  ~b) = 0 (21) 

where ~ is any solution to Eq. (15). 
The functions f that occur in the Chapman-Enskog solution of the Fokker-  

Planck and Rice-Allnatt equations are at least once differentiable. Therefore, 
Theorem 1 appears to be sufficiently strong for the purposes of transport theory. 

3. SOME PROPERTIES OF AFF A N D  ARA IN ~A 

Two properties of AFp and ARA in NA are especially important in the proofs 
we shall give for Theorems 1-3. These are symmetry and essential self-adjointness. 
Consider an operator A defined in some domain of a Hilbert space J/g. We say the 
operator A in ~A is s y m m e t r i c  if (1) ~A is dense in 3/g and (2) 

(u, Av )  = (Au,  v) for all u, v E NA (22) 

In many papers on kinetic theory, the symmetry condition (22) is erroneously called 
the condition of self-adjointness. Symmetry alone, however, does not imply self- 
adj ointnes s. (11.12) 

There are several equivalent definitions of the adjoint of an operator, but the 
definition which provides the clearest distinction between symmetric and self-adjoint 
operators is the followinga2): Let A in ~A be an operator and let NA be dense in ~f'. 
Consider the elements v ~ oct ~ and v* ~ ~Y" for which 

(Au, v) = (u, v*) (23) 

for all u ~ NA. v* is determined uniquely by v. The mapping of all v's into corre- 
sponding v*'s defines the adjoint operator A* of the operator A, and the functions v 
for which (23) holds define the domain ~A* of A*. Thus, 

A * v  = v* for all v s Na* (24) 

and Eq. (23) reads 

(Au, v) = (u, .4*v) for all u ~ Na and for all v ~ ~A* (25) 
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The operator A in ~ is defined to be self-adjoint i fA in ~A is equal to A* in NA*, 
that is, if the formal expressions for the operators A and A* are identical and the 
domains ~A and ~A* are identical. If A in ~A is symmetric, it is clear that A = A* 
in NA �9 However, the domain ~A* may be larger than the domain ~A,  and, in fact, 
the form of A* may be different from A for v e NA* and v r NA- Thus, if we only 
know that A in ~A is symmetric, we can only say with certainty that ~A C NA* 
and that Au = A*u for all u ~ ~A - 

An equivalent definition ofself-adjointness a~) is that (1) A in NA is symmetric and 
(2) (A 4 - i E ) ~  n = ~ and ( A -  i E ) ~  A - - ~ t  ~ i.e., the range of the operators 
(A • iE) is the entire Hilbert space. 

For symmetric differential operators, one often cannot establish self-adjointness 
but can establish the related and useful property of essential self-adjointness. We say 
an operator A in NA is essentially self-adjoint if (1) A in ~A is symmetric and 
(2) (A 4- iE) ~ a and (A -- iE) ~ A a r e  dense in Jt ~. 

We shall prove in what follows that AFp and ARA are essentially self-adjoint 
in the 2A given by Eq. (13). The property of essential self-adjointness of particular 
importance to us in this article is that the closure of A in ~ A is self-adjoint. The closure 
of A in ~A,  denoted herein as A in -~A, is defined as follows: ~A consists of all 
u ~ ~ for which there exist sequences uz, u2 .... E ~A such that l im~o  u~ = u and 
lim,~_~| Au,~ converges in ~ .  For each such u, .4 is defined as .4u = l imn~ A u , .  
Clearly, ~A _C ~A and Au = Au for all u e NA. It is the closure ~ in ~ that is 
involved in s162 solutions of Eq. (1). 

Let us now turn to the study of AFp and ARA in NA of Eq. (13). Here, the Hilbert 
space is 5~ ; co). 

Theorem 4. The operators Ko,K1,K2 of Eqs. (2b), (11), and (12) are 
completely continuous self-adjoint operators in ~2(R a ; co). 

Proof. For /s and K2, the proof  of the theorem has been given by Hecke, (6) 
Carleman, (7) and Grad (81 independently. It can be noted by inspection that Ko is 
symmetric, and that it is an integral operator with a degenerate kernel composed of 
functions in 5e2(R3 ; co) and is, therefore, completely continuous. ('ql 

T h e o r e m  5. The operators AFp and ARA in ~A are symmetric. 

Proof. Both operators can be written in the form 

A = S + g (26) 

where K is a completely continuous symmetric operator and S is a second-order 
differential operator of the form 

Su ----- --[iflo(~0] V~l- [o)(~:x) Vr 4- a(~0 u(~l) (27) 

a(~:0 ---- 0 in the case of AFp 
---- av(~l) in the case of ARA (28) 
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Define the domain 

~ s  = {u(g,) l u(gl) c C=(Ra) n ~ ( R a  ; co), Sue  ~~ ; co)} (29) 

Since K is completely continuous and, consequently, ]]K[u][F < oe for any 
u ~ ~2(Ra ; o 0, the domain -~s is identical to the domain ~A,  Hellwig (12) has proved 
that differential operators of the form given by Eq. (27) are symmetric in ~ s  if 
co(~1) c CI(Ra) and a(~l) c C~ In fact, co(~1) and a(~z) ~ C~(Ra), so that Hellwig's 
theorem establishes that S in ~A is symmetric. Since K is symmetric in ~2(R~ ; co) 
according to Theorem 4, A = S + K is symmetric in ~A �9 

We can now establish that AFv and ARA are essentially self-adjoint. The proof 
for AFp is made particularly simple by the fact that the eigenfunctions of AFp are 
known and form a complete orthonormal set in &~ 3 ; co). In the case of ARA, 
as in Theorem 5, our work has already been done in Hellwig's studies a2) of a class of 
differential operators of which S is a special case. 

T h e o r e m  6. AFt, in ~A possesses the complete orthonormal set of eigen- 
functions (see, e.g., Ref. 13) 

q)rt,~(g) = Urz,~(~/~/2)- ~ Sz+(1/2)(~(r) 2/2) Yz,~(O, q~) (30) 

where r, l = 0, 1, 2 .... and m = - - l , - - l  § 1,..., 1 -  1, l, The eigenfunctions q~000, 
q)oz-1, %10, %11, and 9)10o correspond to the eigenvalue ~ m  = 0, while for r + l > 1, 
the eigenvalues are '~rtm = 2r + l; here, (~:, 0, qS) is the spherical coordinate representa- 

~z+(z/z)(~z/2) tion of ~, Y~,~(O, (~) the spherical harmonic corresponding to lm, and .v(~) "" 
a Sonine polynomical defined by the relation 

+ (-1)J(~ + r)! x~ (31) S~) (x) 
- :  ~, (~ + j ) !  (r - j ) ! j !  j=O 

In (30), N,n,~ is a normalization constant, 

N~.~ = [rr3/2r!/F(r + l + ~)]z/2 (32) 

Proof. From the facts that {Y~m(O, ~)}z,~ form a complete orthonormal set in 
~c,r < 0 < ~r, 0 < ~ < 2rr; cos 0) and {(se/V2) ~ S(~)~+a/2)t~t~/2~~ form a complete 
orthogonal set in ~r < ~ < o~; ~co), it follows that {q0r~} form a complete 
orthonormal set in s ; co). It is easy to prove that p,.~,, are the eigenfunctions of 
A~v. The procedure is to consider the eigenvalue problem 

- [1/~o(f0] %, .  [~o(~,) v ~ ]  = ; ~  (33) 

The operator Ko in AFe is ignored for the moment. Equation (33) can be shown, 
by separation of variables, to admit the eigenvalues )~,, = 2r -k- l and eigenfunctions 
~ m  given in Eq. (30). Then, by noting that 

Ko[q~]  = ,~m~v~,. for rim = 000, 01--1,010, 011, 100 

= 0 otherwise 

we see that Theorem 6 follows. 
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Theorem 6 will aid us in proving the next theorem. 

T h e o r e m  7. AFp in 9A is essentially self-adjoint. 

Proof. The proof is valid for any operator whose eigenfunctions form a complete 
orthonormal set in the Hilbert space. Denote the set of eigenfunctions of AFp by {~j}. 
According to Theorem 6, the set is complete. We shall use this fact to prove that 
(AFp i iE)~,4 are dense in 2~~ ; co), and, consequently, Avp, is essentially self- 
adjoint, since symmetry was established by Theorem 5. Consider any v E 5r ; co) 
and define 

v, = ~ [1/(Aj + i)](~j, v) ~oj (34) 
j = l  

Since AFp is symmetric, the Aj are real, v, ~ ~AFp+~E, and the sequence vl ,  v2 ,... 
converges in &~ 3 ; co). Form the sequence (AFp + iE) v~ and note that 

(AFI, -k iE) v, = ~ (q~j, v) ~j �9 v (35) 
j = l  

almost everywhere since the set {~@ is complete. The same treatment of (A -- iE) 
will complete the proof of the theorem. 

T he o r e m 8. ARA in ~A is essentially self-adjoint. 

Proof. The symmetry of ARA was established by Theorem 6. The rest of the 
proof follows directly from two theorems given by Hellwig. ~12) We noted in the 
proof of Theorem 5 that ARa can be written as the sum of a second-order differential 
operator S and a completely continuous operator K. The form of S is given in Eq. (26). 
The operator S in ~A belongs to a larger class of second-order differential operators 
which Hellwig has shown to be essentially self-adjoint (see his Theorem 2, Ref. 12, 
p. 189). Thus, S is essentially self-adjoint. The second theorem given by Hellwig that 
we wish to use here is as follows: If  S in ~ is essentially self-adjoint, if K in ~ is 
symmetric, and if, for all u ~ 9 ,  [[ Ku Ii <~ EII Su I[ + ~ II u I[ for some constants 3 and 
with 0 ~< e < 1, then S + K in N is essentially self-adjoint. Since in our case K 
is completely continuous, there exists some constant a such that II Ku [l < a II u Ii 
for all u ~ ~~ a ; co). Thus, by choosing ~ ----- 0 and S = a, it follows that ARA = 
S 4- K in ~A is essentially self-adjoint. 

The proof given in Theorem 8 also establishes the essential self-adjointness of 
AFp, since this operator also can be decomposed into a sum of a second-order differen- 
tial operator of the form treated by Hellwig and a completely continuous operator. 

Another property of AFp and ARA that will be useful to us is positive-semi- 
definiteness. Let us list this property as a theorem without proving it. 

T he o r e m 9. AFp and ARA in ~A are bounded from below by zero, i.e., 
for all u ~ ~A , 

(u, Au) >~ O (36) 

f o r A = A w o r A R A .  
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Later, in proving Theorem 1, it will be convenient to divide the operators Ave 
and ARA into a positive-definite invertible operator and a completely continuous 
operator. To this end, we need the following. 

Theorem t0. 

where b > 0, and 

where 

For all u ~ ~A , 

(u, Arpu + affg)u) >~ b II u II ~ (37) 

(U, AFpU @ GO[U]) ~ II U [] ~ (38) 

Go[u] = ~ooo(~ooo, u) + 
1 
E 

m=--I 
q~o~(q~o~, u) q- ~zoo(~V~oo, u) (39) 

Equation (37) follows from the facts that a > 0, v(~) >~ (2~r)~/2/e, and (u, Are) ~ O. 
The proof of Eq. (38) is easy and will be omitted. 

4. THE EXISTENCE THEOREM FOR AFe A N D  ARA IN ~A 

In seeking a solution to Eq. (1) in the ~ sense, we may consider the closure 
equation 

Aw = f (40) 

where .4 in NA is the closure of A in ~A �9 We established in the last section that AFp 
and ARA in ~A are essentially self-adjoint. Therefore, XFp and ARA in NA are self- 
adjoint. Both AFt and ARA can be written in the form 

A = B q- C (41) 

where B is essentially self-adjoint in NA, and such that (u, Bu) ~ b li u II ~, b > O, 
and C is completely continuous. In the case of AFp, we choose 

BFP = AFe + Koo, 

In the case of ARA, we choose 

BRA = & p  + ff~)E, 

CFp = --Koo (42) 

CRA = -- [/s -- Ks] (43) 

According to Theorem 10, BFp and BRA are bounded above zero, i.e., (u, Bu) >~ b l] u II 2, 
b > 0. And, since K1, Kz, and Koo, given in Eqs. (11), (12), and (39), respectively, 
are completely continuous, the operators CFp and CRA are completely continuous. 
The following existence theorem is applicable to Eq. (40) for both AFe and ARA �9 

T h e o r e m  11. If  B and C in N obey the conditions 

(i) B self-adjoint; 

(ii) (w, Bw) ) b H w JF 2, b > O, w ~ ~;  

(iii) C completely continuous; 
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then the equation 

( B +  C) w = f  (44) 

has a solution f o r f ~  oW 2 if and only if 

(f, ~b) = 0 (45) 

where r is any solution to the equation 

(B-k- C)* r ~ (B + C*) r ~ 0 (46) 

where (B -{- C)* is the adjoint of (B + C). Here, (B + C)* can be replaced with 
B + C* since B is self-adjoint and C is a bounded operator. (~) 

Proof. Because of condition (ii), B -1 exists, and since B is self-adjoint, the 
spectral theorem implies that the domain of B -1 is the entire Hilbert space. (14) Thus, 
Eq. (44) may be partially inverted to obtain 

w + B-1Cw = B - i f  (47) 

If Eq. (47) has a solution, it will also be the solution of Eq. (44). But B -~ is a bounded 
operator, in view of condition (ii), and C is a completely continuous operator. 
Therefore, B-~C is a completely continuous operator. Thus, Eq. (47) is in the form 
for which the Fredholm alternative theorem is valid. (9) The theorem states that 
Eq. (47) has a solution if and only if 

0 = (B-V,  z) = ( f ,  B - I z )  (48) 

where z is any solution of the equation 

0 ~- (E + B-~C) * z = (E + C*B -~) z = (B + C*) B-az (49) 

(E + B-1C) * may be replaced by E + C*B -~ because B-~C and C are bounded. 
The second equality in Eq. (48) follows since B -1 is self-adjoint and ~z-1 is 

the entire Hilbert space. The rightmost equality of Eq. (49) demonstrates that the 
solubility condition (48) is equivalent to the solubility condition (45). This completes 
the proof of the theorem. 

Theorem 11 applied to -~ve and ARA states that Eq. (40) will have a solution 
f o r f ~  &~ ; w) if and only if 

(f ,  r = 0 (50) 

where r is any solution to the equation 

Ar = 0 (51) 

For the operators AFp and ARA, it will be shown in Section 6 that the eigenfunctions 
of A and A are the same. Therefore, the solutions of Eq. (51) are 

1, ~, and {:2 (52) 



Existence Theor~ of the Linear Equations 57 

or, orthogonalized (in polar coordinates), the solutions are 

5Oooo, 500i-1, 50010, 50on, and 501oo (53) 

for both -~FP and -4RA �9 
At this point, if we accept Eq. (53) as the solutions to Eq. (52), we can prove 

Theorem 3 as a corollary to Theorem 1 1. Theorem 1 1 implies that the equation 

(~b, ,4w) = (~b,f) (54) 

has a solution for all q~ ~ cg~ if and only if Eq. (40) holds for any solution to 
Eq. (51). Equation (54) can be rewritten as 

(A~, w) = (A~, w) = ( 4 , f )  (55) 

where we have used the symmetry of _~ and have noted that A~ = A~ for all 
~ cg~ Equation (55) implies, then, that a solution to Eq. (40) is a solution to 

Eq. (1) in the weak 5r z sense. Thus, Theorem 3 is proved. 

5. T H E  P R O O F  O F  T H E O R E M  | 

In the preceding section, we saw that the equation Aw ~ f has a solution for 
any. f~  .L~F2(R~ ; ~o) orthogonal to the null space of A* = A, i.e., for any f such that 
( f ,  ~b)= 0, where ~ is any solution to the equation 7_~b = 0. In this section, we 
shall show that if, in addition to the orthogonality condition on f ,  we require that 

f e  C1(R3) c~ ~~ ; co), then w ~ C2(R3) c3 ~q~2(Ra ; co), and, therefore, a solution 
to Aw = f  is a solution to our original equation, since A u  = A u  for any 
u E C2(R3) t~ ~Z(R 3 ; co). Then, by establishing that any solution ~b of the equation 
_A~b = 0 is also a solution of the equation A~b = 0, we shall complete the proof  of 
Theorem 1. 

To establish the desired differentiability of w and ~b, we shall need a theorem 
which is a generalization of a well-known lemma proved by Weyl in connection 
with second-order differential operators. Before proving this theorem, which appears 
below as Theorem 15, let us examine further some properties of the operators 
composing AFp and ARA in ~A �9 

Up to this point, we have been considering the solution of  Eq. (I) in the space 
~cp2(R 3 ; w). It is expedient now to introduce the isometric transformation T = col/2(~) 
which transforms our problem to a problem in the space of simple Lebesgue measure 
s According to the transformation T, the functions u ~ ~~ ; co) are trans- 
formed to functions fi ~ ~2(R3) by the mapping 

c,(~) = T u  = ~ol/~(~) u(~) (56) 

and the operators A in ~,~ are transformed to the operators _d in ~ x ,  where 

_/t = T A T  -1 (57) 

and 
~,~ -- {a I a ~ c~(R~) c~ ~e~(R~), d ~  ~ ze2(R~)} (58) 
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Equation (1) is transformed to the equation 

= / 

The explicit forms of AFp and ARA are 

d~a = --A~la + (}~? -- ~) a -- Ro[a] 

with 

and 

with 

~[/'~] = t"o1/2(~1) fR~ rig2 r gl" g2~(~2) 

(59) 

(60) 

(61) 

ARatl = --A~fi § [av(~i) § ~:,= -- ~1 a -- Ro[a] - aR~[al § aR~[a] (62) 

1 ~:22)] ~(g2) (63) 1 dg2 ~ [exp 4 (~:2 -k 
/~ l [ /g ]  = 2(2~r) ~/-----~ fR~ 

1 %  1 - 2 1 lexp [__ g ~ L  ]l~(g=) (64) 

We introduced the notations 

~2 = [g,  --  g2 [ (65) 

A~I -~ V~l "V~l (66) 

Theorems 3-11, proved for AFp and ARA in ~A ,  remain true for -dFP and ARA 
in ~ .  Moreover, if we can establish Theorems 1 and 2 for -~FP and ARA in ~ a ,  
then they will be true for Ave and ARA in ~A �9 

In proving Theorem 15, we shall use certain smoothness properties of the 
functions generated by R0[fi], Rl[a], and R2[a]. Let us establish these properties now. 
A useful result is the well-known smoothness theorem aS) involving the singular 
solution of the equation A,,v = 0. We shall present the theorem here for functions 
defined in an n-dimensional vector space for n > 2. Thus, x denotes a vector in R,~, 
dx a volume element in R,  and Ax the n-dimensional Laplacian. If  D denotes a 
normal domain in R ,  and D its closure, the theorem reads as follows. 

T h e o r e m  12. 

defined by the equation 

u(x) = -- fD s(x, y)f(y) dy 

where 

s(x, y) = [1/(n -- 2) con] I x -- y 12-n, 

(1) If  f (x) ~ C~ and is bounded in D, then the function u(x), 

(67) 

n > 2 (68) 
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(o~ the area of a unit sphere in R~) belongs to C~(D), and, in particular, 

~u/ax~ = -- f e [as(x, y)/axdf(y) ~ (69) 

where x~ is the ith Cartesian coordinate of x. (2) If f (x) ~ C~(B), then the function u(x) 
defined by Eq. (67) belongs to C~(D), and to C~(D), and satisfies the equation 

AxU = f (x)  for x e D (70) 

T h e o r e m  13. The functions /{7o[Z~], ~l[fi], and /~[ f i ]  are bounded on R~ for 
any function ~ ~ ~Z(R~). 

ProoF. 
inequality, we see 

~l[a] ~< [llz~ H/2(27r) 1/2] I f  dg e ~:~ exp -- �89 q_ ~:2~)] 1/2 < + c o  

e~[a] ~< [2 [l z~ 11/(2~@/~] [ f  dg~ (1/~::~)exp -- �88 < q- co 

The validity of the theorem is obvious for ~0[a]. By use of the Schwarz 

Thus, the theorem is true. 

for all gz E R8 
(71) 

for all ~1 ~ Ra 
(72) 

Theorem 14. If ~(~) ~ C~ n ,5~2(Ra), then the functions ~o[t~], /~1[~], and 
R~[a] E Cl(R~). 

Proof. Again, the truth of the theorem is obvious for/C0[a]. In fact, for any 
~ ~ (R3) ,  ~0[a] E C~(R~). The proof  is straightforward for ~ [~] .  Thus, we shall 

treat only/~2[a]- Let us denote by {D,} a sequence of concentric balls having radii {On} 
and centered about an arbitrary element in R3 �9 We choose the balls such that 

Do C Dz C "" 

and 

so that 

P o ~ P t  < P 2 " " ,  p~--+co as n--~co 

lim D~ = R3 
n--+o3 

Define the sequence {v~(~)} by 

v~(~,) -- (2~r)z/~a fD~ d~2 ~ 1  lexp [ 1 2 g  ~z2 -- 81 (e12 -- e22)2-] I a ( g 2 ) ~ : ~ 2  (73) 

This is a converging sequence. In fact, 

v(gl) = lim v,(gl) = K~[z~l 
n ~ o ~  

(74) 
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According to Theorem 12 (generalized slightly for the case at hand), v Jg0  r Ca(/~,), 
and, in particular, for the ith Cartesian component of ~ ,  

~Vn(g0 2 C F ~ai -- ~2i 1 (~i -- se2i) 1 (~:~z -- ~:2 e) 
~1i - -  (277")1/2 JD. dg2 [ -  ~12 4 ~lz -2 ~1i ~ 

1 (~11 -- ~zi)(~l z -- ~22) 2 lexp 1 1 (~[' ~ ~22) 2 
+ 4  ~:aa2 ] [--gC:~ 8 ~ ]I '~(~2) (75) 

Assume now that g~ E Do �9 Then, for n > m > 0, we obtain the inequality 

I 0v~(~l) ~v~(~l) [ c for all ~ �9 D O (76) 

where c > 0 is a constant. This inequality is obtained by noting that the domain of 
the ~-integration of the difference between the derivatives of v, and v,,~ is the concentric 
space between D~ and D~,~ and that the largest value 1 / ~  can assume in this domain 
is 1/I P0 -- O~ ] corresponding to the smallest value ~:~z can assume. This fact plus 
the Schwarz inequality yield Eq. (57). Since p~-+ oe as m--+ 0% Eq. (76) implies 
that the sequence {~v,(~)/~l~} converges uniformly for ~a ~ Do. For such a sequence, 
a well-known theorem of calculus (~n) tells us that the limit of the sequence exists and, 
moreover, that the limit and differentiation can be interchanged, i.e., 

~v~(~) ~v(~) ~ {/~[~]} for all ~1 ~ D o (77) l i r a  - - 

But since the origin of the ball Do is arbitrary, we can conclude that/~[t~] ~ CI(Ra). 
Now we come to the main theorem in this section. Since no extra work is involved, 

we shall give the theorem for functions defined on an n-dimensional vector space. 
Thus, for the purposes of this theorem, g ~ R,  and d~ is a volume element in R , .  
Let us denote by G any open, simply connected set in R , ,  in particular G = R,  
is admissible. Define 

l (~(~)~C~~ r ~ O  t cg~ = ~(g) outside a compact subset of R . ,  depending (78) 
on ~ and contained in G 

A function w(~) is said to be locally integrable in G if J'~ w(g) dg < + Go for every 
compact subset D of R.  contained in G. In particular, any function in s is 
locally integrable. Let us now state the theorem. 

T he o r e m 15. Let ~(g)~ CI(G) and let w(g) be a locally integrable function 
in G. Let K be a completely continuous operator for which K[u] is a bounded function 
for any u ~ ~2(G), K[u] ~ CI(G) for any u E C~ n ~W2(G), and K[u] ~ C2(G) for any 
u ~ CI(G) c~ ~(G). Let a(g) be a function belonging to CI(G). If the relation 

f c  {--w(g) A~q~ § a(~) w(r ~(r -- ~(~) K[w]} dg = fG ~(~) w(g) de (79) 
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for every r ~ cg~ then w(g) is equal ahnost everywhere to a function belonging 
to C2(G), i.e., in a Hilbert space we may assert w(g)E C2(G). Here, Ar denotes the 
n-dimensional Laplacian operator. 

Theorem 15 is a generalization of what is known as a Weyl lemma for elliptical 
differential equations. The lemma was first proved by Weyl (m for the n-dimensional 
Laplacian operator. Later, similar theorems have been obtained for a variety of 
differential equations. In particular, Fichera (~s) and Wienholtz (19) have presented 
elementary proofs of the lemma for elliptical differential operators. Their method 
has been outlined in detail by Hellwig (~2) for the operator --A x -/- a(x), where A X 
is an n-dimensional Laplacian operator. The proof of Theorem 15 follows as an 
easy extension of the method, as outlined by Hellwig on pages 193-197 of Ref. 12. 

Proof. To try to conserve space, we shall follow as closely as possible the 
development given by Hellwig on pages 193-197 of Ref. 12. Equations of that 
treatment will be referred to in the form H.Eq. (.). 

Let D 1 be a ball centered around an arbitrary point in G and such that/31 C G. 
Let D~ be a ball concentric to D1 such that D2 C D1. Let p(x) ~ c~~ 0 and let p(x) ~- 1 
in D2 �9 Define for y ~ D 2 the function 

(, 

v(y) = j w(x) Ax[p(x) s(y, x)l dx ! 
D1 

-k fD1 s(y, X) p(X){~(X) -- a(x) w(x) -k K[w]} dx (80) 

The problem now is first to prove that w(x) is equal to v(x) almost everywhere and 
then to deduce from the properties of the right-hand side of Eq. (80) that w(x) is 
equal almost everywhere to a function in C a. By replacing the entity [~7 -- awl with 
{r I -- aw + K[w]} everywhere it appears in H.Eqs. (4)-(10), the arguments in Ref. 12 
follow directly for the present case, and we arrive at the result 

fD~ [v(y) -- w(y)I r dy = -- fox {--w(x) Axe + a(x) w(x) r 

- -  r  K[w]}  dx (81) 

where r is any function in q~~ and r = p(x) J'D.~ s(y, x) r dy~ C2(D1), 
by Theorem 12, and vanishes identically in a neighborhood of the surface of D1. 
Thus, r and its first and second derivatives can be approximated uniformly by 
functions r e cg~ Consequently, by the hypothesis of the theorem, the right-hand 
side of Eq. (81) vanishes, implying that 

f [v(y) -- w(y)] r dy = 0 for all r ~ cg~ (82) 

which, in turn, implies that v(y) = w(y) almost everywhere in D2. 
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Thus, 

w(y) = j~, w(x) A x[p(x) s(y, x)] dx 

-}- f~s(y, x) p(x){~/(x) -- a(x) w(x) + K[w]} dx (83) 

almost everywhere in D2. The integrand of the first term on the rhs of (83) is zero 
except in the domain D1 -- D~ owing to facts that p(x) -~ 1 for x e D~ and A~s(y, x) = 0 
for x @ y. Thus, the first term is ~D1-D~ " W(X) A~[p(x) s(y, x)] dx, which belongs to 
C~ The integral involving ~7(x) belongs to C2(Dx) according to Theorem 12. 
Equation (83) can consequently be written in the form 

-- f s(y, x) p(x)(a(x) w(x) K[w]} dx q- gl(Y) w(y) = J ~ (84) 

where 33 C D2 and gl(Y) E C2(Dz), almost everywhere in D3. 
From the hypothesis that K[w] is a bounded function in R~ and p(x) is bounded 

in Dz, we can conclude that 

s(y, x) p(x) K[w] [ ~ c y ~ R. (85) 
1 

dx for all 

where c is a constant. Hence, the inequality 

[ w(y)l ~< f cll w(x)l (86) 
D1 ] Y-- x I ~-2dx + c2 

holds almost everywhere in D3, where cl and c~ are constants. Equation (86) is 
identical to H.Eq. (14), and, therefore, H.Eqs. (15)-(22) imply that there exists a ball 
D , ,  D~ C D1, in which w(x) is equal almost everywhere to a function b(x) which is 
bounded in D2, and is integrable since w(x) is integrable. The boundedness of w(x) 
in D2 is established by iteration of the inequality in Eq. (86). 

Consider the balls D~+z, D~+2 concentric to D~ and such that /)~+2 C D~+~ C 
/)~+1 C D~. Be defining p(x) ~ (D~) such that p(x) ~ 1 in D~+I, we obtain, analogously 
to Eq. (84), the expression 

f s(y, x) p(x){a(x) b(x) K[w]} dx + g~(y) (87) w(y) ----- -- )v~ 

almost everywhere in D~+2. Here, g~(y) ~ C2(D~+2). Since p(x) a(x) b(x) and p(x) K[w] 
are bounded in D~, we see from Theorem 12 that w(y) coincides almost everywhere 
in D~+2 with a function c(x) E CZ(/7~+2). But because the original ball was centered 
on an arbitrary point in G, we conclude that 

w(x) E cl(c)  (88) 

almost everywhere in G. 
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Repeating the argument used to obtain Eq. (87), we obtain 

w(y) = -- f s(y, x) p(x){a(x) w(x) -- K[w]} dx + g~+2(Y) (89) 
D~+2 

where, almost everywhere in D~+4, 

g~+2(Y) e C~(D,+4), D~+4 C D~+3 C/~+3 C D~+2, and p(x) ~ cg~ 

with p(x) = 1 in D,+4. According to Eq. (88) and the hypothesis of the theorem, 
p(x){a(x) w ( x ) -  Kiwi} E C1(D~+2). Application again of Theorem 12 leads to the 
result w(x)e C2(D~+~) almost everywhere. Noting again that the sphere D j_ was 
centered around an arbitrary point in G, we conclude that w(x)~ C~(G) almost 
everywhere in G. This concludes the proof of the theorem. 

We are now in position to prove Theorem 1. According to Theorem 11, for 
either A'vP or A~RA in NX, the equation 

24 = / ( 9 0 )  

has a solution in ~qP2(R3) for/e ~2(R3) if and only if 

()~ ~) = 0 (91) 

where ~ is any solution of the equation 

= 0 ( 9 2 )  

Multiplying Eq. (90) by ~ ~ c~~ and integrating, we obtain 

(q~, 2@) = (q~,f) for any q~ e cg~ (93) 

Since 2 is self-adjoint and since 2 ~  = _4~ for any q~ e c~~ Eq. (93) can be written 
in the form 

= fR 3 d~l q~(~)f(g0 (94) 

for all q~ e ~~ Referring to the definitions of AFP and ARA, Eqs. (60)-(64), 
and to the conclusions of Theorems 13 and 14, we see that a(g~) and/~  satisfy the 
hypotheses of Theorem 15. Therefore, iff(gl) e Ca(R3), it follows from Theorem 15 
that 

E o r  E 

and, therefore, .~2 = ~ 2  = f ,  establishing the existence of a solution to Au = f  
of Theorem 1. Applying Theorem 15 for the case f -~ 0, we conclude that ~ e C~(R3), 
where ~ is any solution to Eq. (92), so that 

establishing Eq. (I5). This completes the proof of Theorem 1. 
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6. SOME SPECTRAL PROPERTIES OF AFv A N D  ARA 

Theorem 15 and a closely related theorem, which we shall give later, allow us 
to say a great deal about the spectrum of Ave and ARA. We have already seen that 
the eigenfunctions of Avv and -~Z~A corresponding to the zero eigenvalue are also 
eigenfunctions of A~p and A R A  . We shaU give the even stronger result that every 
eigenfunction of -4~v and ARA, respectively, is an eigenfunction of AFV and ARA, 
respectively. That is the content of the following theorem. 

T h e o r e m  16. If  A in ~A is an operator of the form given in the hypotheses 
of Theorem 15, then, for every eigenfunction u(x) ~ ~.4, 

u(x) c NA , i.e., .~u = Au (95) 

Proof. Assume u E ~~ is the eigenfunction of A in NA corresponding to 
the eigenvalue 1. Then, 

~u -- Au = 0 

o r  

( 4 ,  A u  - -  ;~u) = 0 f o r  al l  4 s ~~ (96) 

If  A satisfies the hypothesis of Theorem 15, so does A -- AE, and, therefore, Eq. (96) 
is the special case for which f--= 0 in Theorem 15. Hence, u(x) ~ C2(Ra) n ~ ( R 3 )  , 
which implies u ~ NA and completes the theorem. Theorem 16 is true for -dFv and 
ARA in ~X and for A~v and ARA in ~A �9 

Since the continuum spectrum of AFp in ~A (and AFp in NA) is empty, Theorem 16 
completes the story for the operator AFp �9 In fact, we even know all the eigenfunctions 
of AFp. On the other hand, we do not even know whether ARA in ~A has any eigen- 
functions besides those corresponding to the zero eigenvalue. For this reason, it is 
useful to relate the spectrum of ARA in NA to the more general properties of the 
spectrum of ARA in ~A �9 

It is useful to state the spectral theorem a2J for self-adjoint operators at this 
point. 

T h e o r e m  17. Let A in NA be self-adjoint. Then, there exists a family of 
projection operators E~ in ~ ,  --oo < ~ < 0% with the following properties: 

(1) Ea is symmetric and E~E~ = Ea. 

(2) E~E, = E,E~ = E~, ~r = min{A,/z}. 

(3) E,+0 ---= E,  for --oo < / x  < oo. Here, E,+ o is defined by E,+oU = lima., E~u 
with ;~ >~/z. 

(4) limA_,_| Ea : 0 and lim~_~ E~ = E. 

(5) Au = ~ A dE~u for all u e ~A �9 

(6) Ea is uniquely determined by the properties mentioned here. 

(7) (Au, v) = ~-~o Z d(Eau, v) for all u E NA and v ~ ~ .  
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(8) u ~ ~A if and only if the Stieltjes integral J'-~o )t2 dp(A) exists, where p(A) = 
(E~, u). 

(9) (EAA - -  Eu. ) /~/ E ~A for every u e ~ and every finite ,~, /~; and E3.u ~ ~A for 
every u e ~A and every ,~, -- oo < A < oo. 

By the following generalization of Theorem 15, we shall be able to prove that 
the spectrum of A in ~A coincides with the spectrum of .71 in ~A when A is of the 
form of AFp or ARA �9 The generalization represents a simple extension of that given 
by Hellwig (12) for the second-order differential operators he treated. 

T h e o r e m  18. Let c and A0 be fixed real numbers, let ~ = { (x ,A) ]x~  G, 
-- oo < A < oo}, and let w3.(x) be a function which is locally integrable in ~, as well as, 
for fixed A, in G. Let a(x) and K satisfy the hypotheses of Theorem 15. If, for all 
r ~ ((~ and every real number in A 

where 

f c  {--we(x) Axe + w3.(x) a(x) r -- r K[wa] -- Aw3.(x) r dx 

= f c  ~3.(x) r dx 

A 

(97) 

then, for every A, w~(x) = ~3.(x) almost everywhere in G, where ~3.(x) ~ C~(G). 

The details of the proof of this theorem, again with the modifications given 
in the proof  of Theorem 15, follow the details given by Hellwig (12) for the case in 
which K ~ 0. Thus, we shall omit the proof. Let us present one more definition 
before using Theorem 18. 

In physics, one often uses the concept of eigenpackets to deal with the continuous 
spectrum of an operator. Following Hellwig's adaption of Hellinger's definition (2~ 
of  eigenpackets, we say that ~3. is an eigenpacket of  the symmetric operator A in ~A if  

(1) q)3. ~ ~A for -- oo < A < oo, ~3. ~ -- 0, where A o is some real, fixed number; 
A o = --oo is admissible; 

(2) tb3. is continuous in A, i.e., tim3._,, J] ~ ,  -- ~3. [i = 0 for every A; 

t ~  3. 

(3) Aq~3. = | /xdq). for --oo < A  < oo (98) 
1 /  3. o 

We shall now state some differentiability properties of ~3. and the spectral 
family E3. �9 

T h e o r e m  19. I fA in ~A is an operator obeying the hypotheses of Theorem 15, 
then, for every eigenpacket ~3, of .,1 in ~A,  

~3.(x) ~ ~A,  i.e., A~3. = At-b3. (99) 

822/3/z-5 
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Theorem 20. Let A in ~A be an operator obeying the hypotheses of Theorem 
15. Let Ea in ~ be the spectral family associated with ~ in ~A �9 Then, for all v e 
and all real numbers ~0, h, 

a 

(Ea -- Ea0) v ~ ~A and ~ IX dE, v ~ =@.4 (100) 
d A0 

If  A in NA is bounded from below, Ear ~ ~@A �9 
These theorems are true for AFp and -alga in ~,~ and for Ave and ARp in ~A �9 
Aside from using Theorem 18 instead of the similar theorem for K =-- 0, the 

proofs of these theorems are identical to the proofs of similar theorems given by 
Hellwig. ~2~ Thus, we shall omit the proofs. 

Finally, we shall establish the theorem which will enable us to prove Theorem 2 
of the section on existence theorems. 

Theorem 21. Let A in ~A be an operator obeying the hypotheses of Theorem 
15. Let Ea in ~ be the spectral family associated with A in ~A �9 Assume, moreover, 
that (u, Au) >~ b 1[ u I[ ~, b > 0, for all u e ~A �9 Then, for any fixed numbers ~ >~ A 0 ~> b, 
and for any v E 3el, 

~ 0/t0 dE.v ~ ~A (lOl) 
~o 

�9 a 2 " 

o_  
~" ~ Proof. We need only establish that .[a (1/l~)dE, v~ C (R~), since, clearly, 

(l//x) dE~v e ~ .  Consider ~b e ~g~ Since A is self-adjoint and since 

f (1//*) dE, v ~ ~ a ,  
ao 

we may write 

(M~, ~>o(ll#~)dE.v) = (+,~ Fao(ll~)dE.v) 

According to Theorem 
may be applied to obtain 

Moreover, 

= (+ fi0  ) 
= (dp, (Ea -- Eao)v) for all ~ E ff~ (102) 

20, ( E ~ -  E~o)v E C2(Rn), and, consequently, Theorem 15 

A a a 

~o ao ao 

The right most member of Eq. (104) is equal to Eav if A0 = b since b represents 
the lower bound to the spectrum of the A in NA hypothesized here. 

(1//,) dE~v ~ ~A (103) 
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We can now prove Theorem 2. The operators AFp and ARA in ~A can be written 
in the form 

A = B + C  (105). 

where B is a positive-definite, essentially self-adjoint operator and C is a completely 
continuous self-adjoint operator. In particular, according to Theorem 10, we can 
choose 

BFv = A~I, + Koo, CFv = --Koo (106) 

and 

BRA =- Aw, + av(~)E, CRA = K~ -- 1s (107), 

where Koo is defined in Theorem 10 and Ka and K2 are defined by Eqs. (11) and (12). 
Consider the equation (note that C = C) 

f o r f e  ~e2(Rz ; co) such that 

for any solution to the equation 

Bw + Cw = f (108) 

( f ,  r  = 0 

(B + c)  r = (B + c)  r = 0 (109) 

The second equality follows from Theorem 16. According to Theorem 11, a solution 
w z 5~ ; co) to Eq. (108) exists. Moreover, according to the spectral theorem 

r foo 
w(gz) = -- J b (1//z) dE, Cw + b (1//x) d E . f  (110) 

where b is the lower bound on B and E, is the spectral family associated with B. 
Consider next the sequence {w,(gl)}, n = 1, 2,..., 

f f" w.(gl) = -- (1/be) dE.Cw + (1//x) d E . f  (111) 
b b 

According to Theorem 21, w~(gl )  e ~ z  = ~ A  �9 Hence, 

Awn = Aw,~ 

= ( B +  C ) w .  

= -- f [  dE.Cw + f~ d E . f +  Cw,~ (112) 

{w~(~l)} is a converging sequence, 

lim w.(gz) = w(~z) (113) /t->~ 
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and,  because lim~_,~ Cw,~ = C(lim w~) = Cw for complete ly  cont inuous  opera tors ,  

lira A w ,  - -  f = 0 (114) 

a lmost  everywhere in R3 �9 This completes  the p r o o f  o f  Theorem 2. 
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